

Genetic variants and polygenic risk score associated with the HDL-c response to statin treatment: a GoDARTS study

Mehul K Chourasia¹, Moneeza K Siddiqui¹, Sundararajan Srinivasan¹, Phil Appleby¹, Simona M Hapca¹, Ewan R Pearson¹, R Guha Pradeepa², Radha Venktesan³, Alex SF Doney¹, Colin NA Palmer¹

- 1. Division of Population Health and Genomics, Ninewells Hospital, University of Dundee, Dundee, United Kingdom, DD1 9SY
- 2. Department of Foods Nutrition & Dietetics Research, Madras Diabetes Research Foundation, Chennai, Tamilnadu, India, , 600086
 - 3. Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamilnadu, India, 600086

Introduction	Results
	Paired Profiles for (B_hdl, H
 Stating mainly act on the reduction of low- 	8 - Mean

Results	
Paired Profiles for (B_hdl, hdl_max_A)	Distribution of Difference: B_hdl - hdl_max_A With 95% Confidence Interval for Mean
8 Mean 8	
	Kernel

Discussion and conclusion

• This study shows statins also helps to improve high-density lipoprotein-cholesterol (HDL-c) levels up to 20% in the study population.

- density lipoprotein-cholesterol (LDL-C) levels.¹
- Studies have shown that statin therapy also helps in improving high-density lipoproteincholesterol (HDL-c) levels up to 10-15%.²
- Inter-individual variation in HDL-c response to statins therapy could be partially explained by genetic variation.
- A recent meta analysis suggested only *CETP* locus for with common genetic variants that influence HDL-C response to statins.³
- Global Lipids Genetics Consortium (GLGC)
 2013, has identified 80 genetic variants associated with HDL-c levels.⁴

Study Objectives

• To investigate genetic variants associated

Table 2: Variants associated with HDL-c response (Adjusted for age, sex, dose, Baseline HDL-c, treatment duration)

Parameter	Estimate	Standard Error	t Value	P value
rs247616 (<i>CETP</i>)	0.011	0.003	3.71	0.0002
rs1532085 (<i>LIPC</i>)	0.011	0.002	-4.08	<.0001

- Individual genetic variants shows significant positive association with the HDL-c response after adjusting for phenotypic traits.
- Overall effect of PRS with HDL-c response is comparatively less then baseline HDL-c. This suggests that some gene variants differentially contribute to baseline HDL-c levels and HDL-c response.

Way forward

- Preliminary data suggested that HDL profile between the two population [Scottish (1.20 ± 0.33) and India (1.04 ± 0.23)] were significantly different (p value <0.001)^{5.} Hence, genetic differences needs to be investigated.
- GWAS using Affymetrix, Illumina, and Broad (genetically adjusted) and meta-analysis will be carried out to find the novel loci in MDRF and GoDARTS data.

- with the HDL-c response to statin treatment in GoDARTS cohorts
- To construct and assess the effect of a polygenic risk score (PRS) for HDL-c response in the study population

Study Methodology

Study population and sample size	 10,633 statin users in GoDARTS cohorts 			
Inclusion criteria	 At least, one off treatment HDL-c level and at least one on- treatment level 			
Exclusion criteria	 Subjects with missing on- or off- treatment measurements 			
Study outcome	 Change in HDL-c (mmol/L) levels 			

Graph 2: Normal distribution of Polygenic risk score

Graph 3 (a & b): Regression of Baseline HDL-c (a) and response of HDL-c (b) with Polygenic risk score

Table 3: Effect of PRS on baseline HDL-c (adjusted for age, sex) and HDL-c response (Adjusted for age, sex, dose, baseline HDL- c, treatment duration) (n = 8,271)						
Outcome	parameter	Estimate	S E	P value	Adjusted	

					R square
Baseline HDL-c	PRS	0.137	0.017	<0.001	0.08
HDL-C response	PRS	0.01	0.008	0.0175	0.28

Statin induced elevation in HDL-c levels were (0.27±0.32; t-test p-value <0.001) observed (table 1; graph 1).

- Conditional GWAS will be carried to adjust for variants affecting purely baseline HDL-c levels.
- Discovered novel loci for real pharmacogenetic drug response will be used for polygenic risk score in the study population.

References

1. Cholesterol Treatment Trialists' (CTT) Collaborators. (2012). The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: metaanalysis of individual data from 27 randomised trials. *Lancet*, *380*(9841), 581–590.

2. McTaggart F, Jones P. Effects of statins on high-density lipoproteins: a potential contribution to cardiovascular benefit. Cardiovasc Drugs Ther. 2008;22(4):321–38.

3. Postmus, I., Warren, H. R., Trompet, S., Arsenault, B. J., Avery, C. L., Bis, J. C., ... Krauss, R. M. (2016). Meta-analysis of genome-wide association studies of HDL cholesterol response to statins. *Journal of Medical Genetics*, *53*(12), 835–845.

4. <u>http://csg.sph.umich.edu/willer/public/lipids2013/</u>

5. INSPIRED WP1 – Unpublished data provided by MK Siddiqui

Study predictor

• Polygenic risk score (Top 22 SNPs for HDL-c from GLGC 2013)

Results

Table 1: Difference between before and after HDL-c value (Paired T test)						
Ν	Mean (SD)	Min	Max	t Value	P value	
10,633	-0.27(0.32)	-5.58	1.46	-87.97	<0.0001	

- Among all reported SNPs, rs3764261 (*CETP*), and rs1532085 (*LIPC*) were among few which significantly associated with raise in HDL-c levels (adjusted) (table 2).
- PRS has a significant effect on Baseline HDL-c levels (R square = 0.015) (table 3; graph 3).

Acknowledgements

- We would like to thank the Health Informatics Centre at the Farr Institute, Scotland for their support in data management.
- We would also like to thank Dr. Shona Matthew and entire INSPIRED project staff for their constant support.
- The research was commissioned by the National Institute for Health Research using Official Development Assistance (ODA) funding [INSPIRED 16/136/102].

Disclaimer: "The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care."